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ABSTRACT

Previous studies have shown that hippocampal place fields are controlled by the
salient sensory cues in the environment, in that rotation of the cues causes an
equal rotation of the place fields. We trained rats to forage for food pellets in a
gray cylinder with a single salient directional cue, a white card covering 90° of
the wall. Half of the rats were disoriented before being placed in the cylinder, in
order to disrupt their internal sense of direction. The other half were not
disoriented before being placed in the cylinder; for these rats, there was
presumably a consistent relationship between the cue card and their internal
direction sense. We subsequently recorded hippocampal place cells and thalamic
head direction cells from both groups of rats as they moved in the cylinder; \
between some sessions the cylinder and cue card were rotated to a new direction.
All rats were disoriented before recording. Under these conditions, the cue card
had much weaker control over the place fields and head direction cells in the rats
that had been disoriented during training than in the rats that had not been
disoriented. For the former group, the place fields often rotated relative to the
cue card or completely changed their firing properties between sessions. In all
recording sessions, the head direction cells and place cells were strongly coupled.
It appears that the strength of cue control over place cells and head direction cells

depends on the rat's learned perception of the stability of the cues.
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The spatially selective firing properties (place fields) of rat hippocampal
pyramidal cells (place cells) have been shown to be controlled by the salient
sensory cues in the environment. When the experimental apparatus and salient
cues are rotated relative to each other, place fields retain their firing position
relative to the salient cues (O'Keefe and Conway, 1978; Muller and Kubie, 1987;
O'Keefe and Speakman, 1987; Bostock et al, 1991). Behavioral studies show that
rodents can use the spatial information provided by visual cues to navigate and
remember locations (e.g., Collett et al., 1986; O'Keefe and Speakman, 1987). In
addition, rodents also can keep track of their own movements and position in an
environment free of polarizing cues (e.g., Mittelstaedt and Mittelstaedt, 1980;
Etienne, 1992), presumably through a combination of vestibular and
proprioceptive information. One component of this path integration ability is an
internal sense of direction, presumably mediated by a network of cells that
respond when the rat faces a particular direction, regardless of the spatial
location of the animal. Such cells have been recorded in the postsubiculum
(Ranck, 1984; Taube et al., 1990a,b), parietal cortex (Chen et al., 1990, 1994a,b),
and thalamus (Mizumori and Williams, 1991, 1993; Taube, 1992). These "head
direction” cells could act as an internal compass for the rat, allowing it to
maintain an internal sense of direction in the absence of external sensory input.

In a study addressing the effects of changing visual cues on place cells, we
explicitly attempted to minimize the influence of the rats' internal compass by
disorienting the rats before each recording session. We reasoned that the
disoriented rats would thus be forced to rely on the salient visual cue as the only
reliable source of directional information. To our surprise, we found just the
opposite result: Under these conditions, place fields often changed position
relative to the visual cue, in contrast to the prior results reported in the literature.

One possible explanation for this result is that the dominant directional cue for a




disoriented rat is its own internal compass, which is presumably set at random at
the beginning of each training session. For such a rat, the visual cue would be
perceived at different directions on different trials and would thus not constitute
a stable landmark. To test this hypothesis, we trained one group of rats under
the usual disorientation procedures and another group with an explicit effort to
teach the rat that the visual cue is a stable directional cue. We hypothesized that
the visual cue would exhibit strong control over place fields in those rats that
were trained to regard the cue as a stable landmark when these rats are
subsequently disoriented, whereas the cue would exert much weaker control in
rats that had never received this prior training. Part of this research has been
reported previously in preliminary form (Knierim et al., 1993; McNaughton et al,,
1994).

METHODS

Training protocol

Ten adult male Fischer-344 rats were placed on a controlled diet and
maintained at approximately 80% of their free-feeding weight. The rats had free
access to water. They were trained to search for chocolate pellets tossed
randomly within a gray-walled cylinder (51 cm high, 76 cm diameter; Muller et
al., 1987); at any given time there were approximately 1-5 pellets scattered on the
floor. A single white cue card covered 90° of the eastern wall of the cylinder.
Rats usually had two 15-min training sessions a day until they spent most of their
time within the cylinder in constant motion; this took 1-4 weeks. Brown paper

covered the floor of the cylinder and was replaced before each training and




recording session. Rats were not allowed to sit still for long periods or to groom
in the cylinder.

Disorientation training. Half of the rats underwent a disorientation
procedure before each training session. The intent of this procedure was to
disrupt the rat's internal sense of direction so that it had to rely solely on the cue
card for a directional reference. Rats were taken from their home cage to a
holding platform in another room, where they stayed in between training and
recording sessions. Before each session, the rat was placed in a large (28 cm x 48
cm x 29 em high), covered, styrofoam box and was carried up and down the halls
in a random fashion; the box was occasionally rotated gently. The rat was then
brought into the recording room, and the door between the recording room and
computer control room was closed. A black circular curtain just inside the
perimeter of the room was closed. The rat was carried around the cylinder a
number of times, changing direction frequently and occasionally rotating the box
randomly. The experimenter carried a radio playing "white" noise in his pocket,
in order to mask auditory cues. The box was placed into the cylinder at one of
the four cardinal directions (north, east, south, or west) chosen at random, with
the exception that two consecutive sessions could not have the same entry point.
The rat was taken out of the box and placed on top of the box for a few seconds
before being placed in the cylinder. The box was removed, and the experimenter
began to toss the pellets in the cylinder at random locations. The experimenter
walked randomly around the cylinder so as not to become a stable directional
reference himself. A 64 cm diameter circle of 100 small white Christmas tree
lights, centered 160 cm over the cylinder floor, provided the only illumination in
the black room. These conditions provided very little directional information
other than the cue card; even the experimenters at times became disoriented after

some time in the room, opening the curtain at the wrong location at the end of




the session when trying to find the door. After 15 minutes, the rat was placed
back in the box from the same entry direction, and the whole disorientation
procedure was repeated in reverse.

Nondisorientation training. The other half of the rats did not undergo the
disorientation procedure. These rats were carried from the holding platform
directly into the recording room, held openly in the experimenter's arms, and
they were placed directly into the cylinder at one of four directions chosen at
random (as above). The door and curtain between the recording and control
rooms were left open, such that the rat could hear any noise coming through the
doorway, and no white noise was played. The objective of this training was to
maintain perceptual constancy between the recording environment and the
external world, such that the rat learned that the cue card was always in the same
location and was thus a stable directional reference.

Immobilization training. Foster et al. (1989) showed that hippocampal
pyramidal cells shut off almost completely when a rat is restrained. After the
end of the primary study, we tested the effects of restraint on thalamic head
direction cells in 5 rats. Over the course of many days, rats were trained to
accept restraint by wrapping them in a towel with towel clips and Vetwrap
bandage; as the wrapping became tighter over days, the rats learned that escape
was impossible and they began to cease struggling. They were fed chocolate
pellets as a reward for not struggling. On the recording day, rats sat on a narrow
pedestal that could be rotated, and the head direction tuning profile was
measured as the rat was slowly rotated about 10 times over the course of
approximately 1 min. The rat was then wrapped in the towel and the tuning
curve was again measured. Finally, the rat was unwrapped and the tuning curve

was measured once again.




Recording methods

Surgery. Recording electrodes made of 4 thin wires twisted together
("tetrodes;" McNaughton et al., 1983a; Recce and O'Keefe, 1989; Wilson and
McNaughton, 1993) were implanted bilaterally in each rat after it had learned to
spend most of its time in the cylinder searching for food. The detailed surgical
procedures are similar to those described in McNaughton et al. (1989a), with
some modifications. Rats were anesthetized with pentobarbital sodium
(Nembutal; 40 mg/kg i.p.), supplemented with methoxyflurane (Metofane) as
necessary. They received 30,000 units penicillin (Bicillin) i.m. in each hind limb
as a prophylactic. Two tetrodes separated by approximately 300 pm were
implanted in each hemisphere. The tetrodes on the right hemisphere were
positioned to encounter dorsal CA1 and the tetrodes on the left hemisphere were
positioned to encounter the anterior thalamus. The electrodes were initially
implanted 1 - 1.5 mm into the cortex. After surgery, the rats recovered in an
incubator and were administered 25 mg acetaminophen orally for analgesia.
They also received 2.67 mg/ml acetaminophen in their drinking water for the
next 3 days.

Electronics. After 2-7 days of recovery, the tetrodes were advanced
through the brain over the course of 3-6 days until stable units were well-isolated
from CA1 (2-2.5 mm below putative brain surface) on the right hemisphere and
sometimes from anterior thalamus (4-5 mm below brain surface) on the left
hemisphere. During recording, two tetrodes could be monitored simultaneously.
An array of 10 FET source followers was mounted on the rat's head, 4 for each
tetrode and 2 for reference electrodes. Also mounted on the rat's head were two
arrays of infrared LEDs to track the animal's position and head direction in the
cylinder at 20 Hz (Dragon Tracker). Electrical signals were filtered between 600




Hz and 6 kHz and amplified 10000 times before being digitized at 25 kHz and
stored on a 33-MHz 80486-based computer running customized data acquisition
software. All unit isolation and data analysis were performed offline.

Recording sequence. Each rat underwent numerous recording sessions over
the course of many days. Four 10-15 minute sessions were usually run each day,
with the white cue card either at its standard location (east) or rotated between
trials. All rats were disoriented before and after each recording session; in
between sessions they rested on their holding platform in another room for 10-20
min. For most analyses, we used only the first four days of recording in which
stable cells were recorded for each rat. The typical sequence of recordings is
shown in Table 1. Additional days of recording were analyzed for other specific

purposes, and these are described in the results.

Data analysis

Offline unit isolation. The tetrode technique, an extension of the stereotrode
technique of McNaughton et al (1983a), allows the isolation of single units based
not merely on signal amplitude, as with standard single electrodes, but on the
relative amplitudes of signals recorded simultaneously at four slightly different
locations, using four closely spaced electrodes. Additional waveform
characteristics, such as spike duration, are also used. This technique results not
only in a greater yield in the number of units isolated but also improves the
quality of isolation over standard single electrode techniques (Recce and O'Keefe,
1989; Wilson and McNaughton, 1993).

Waveform characteristics, such as amplitude, are plotted as a scatter plot
of one of the electrodes versus another. Individual units form clusters of points

on such scatter plots, and the boundaries of these clusters are defined with the




use of a custom interactive program running on a Sun Sparcstation. The spike
times of individual units are then combined with the position and direction
information provided by the tracker to generate firing rate maps and head
direction tuning curves for each cell.

Weighted mean rotations of place cells. To determine whether place fields
were bound to the cue card or whether they rotated with respect to the card
between sessions, we calculated a mean rotation score of all the cells recorded in
each session. First, the firing rate maps of each cell for one session were
correlated with the firing rate maps for the following session. The maps were
then rotated with respect to each other in 5°-steps, and the correlation was
measured for each step. The angle of highest correlation was taken as the
amount of rotation for that cell. Since there were usually multiple cells recorded
each day, the amount of rotation between trials was calculated as a weighted mean
of all complex-spike cells meeting inclusion criteria (see below) by the following
formula (adapted from Batschelet, 1981):

(arctan(Y/X) ifX>0

mean rotation = { - - -
\arctan(Y/X) + 180° if X <0

where
_ . wisin®)
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_ Z wij (cos9j)
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where wij is the weight score for cell i and 8; is the angle of best correlation for
cell i.

The weight score was intended to ensure that cells with well-defined place
fields at the edges of the cylinder have more weight in the overall mean rotation
score than cells with poor place fields in the middle of the cylinder. It was

defined as
wi = infoj (rpest - r180)

where rpegt is the highest correlation score for the rotation analysis, rigg is the
correlation score for the angle 180° away from the best, and infoj is a measure of
the amount of information about the rat's position conveyed by the firing of a

single spike from the cell (Skaggs et al., 1993):

Aj N
infoj = Z pj—- logy ——-
j A A

where pj is the probability of occupancy in bin j, Aj is the mean firing rate for bin
joand A is the mean overall firing rate. The information score is a good measure
of whether a cell has a statistically significant spatial firing bias. In general, the
score correlates well with the experimenter's subjective judgments of the quality
of a place field. Cells whose information score was not significant at the .01 level
in both sessions were omitted from the analysis, as were cells that fired less than
50 spikes over the whole recording session.

The difference between the two opposite correlation scores (rpest - r180)
ensured two goals: that cells with stable place fields between sessions would

have more weight than cells that change firing properties between sessions (as
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their rpest score would be higher) and that cells with fields in the center would
have low weight (as their rpest score would be canceled by their rigp score,
whereas a good field at the edge would have a low or negative r1gg score, thereby
enhancing its overall correlation score). In general, the weighted mean rotation
score correlated well with the experimenter's subjective judgments of the overall
amount of rotation of the hippocampal representation in between trials.

Weighted variance of place cell rotation. To determine the variance in the
amount of rotation between simultaneously recorded place cells, we used the
following equation for variance (adapted from Batschelet, 1981), incorporating

the same weight scores described above:

Z 2wij [1 - cos(8; - é)]

2. Wi

2=

where wij is the weight for cell i, B is the angle of rotation for cell i, and 6 is the

mean weighted rotation for all cells recorded at the time.
Histology

At the end of experiments, most rats were given small electrolytic lesions
to aid in determining electrode positions. Rats were perfused transcardially with
4% formalin, after which the brains were removed and placed in a 30% sucrose
formalin solution until they equilibrated. Forty-micron sections were cut on a
sliding microtome, mounted on slides, and stained with Cresyl violet, to

reconstruct electrode tracks.
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RESULTS

These results are based on a total of 329 recording sessions in 10 rats, with
each rat undergoing usually 4 sessions per day. We analyzed on average 3.2
complex-spike cells per session (range 1-11). This number does not reflect the
many recorded cells not analyzed in detail, namely theta cells and complex-spike
cells that did not meet our analysis criteria (see Methods). The number is also
not indicative of the total number of independent cells analyzed, for identical
cells were recorded between sessions of the same day and often between days.
The large majority of cells were from CAl, although some cells were from CA3
(and possibly dentate gyrus), as verified by electrode track reconstruction. No
differences pertinent to this study were seen between CA1 and CA3 cells. Of the
329 recording sessions, we recorded head direction cells from the thalamus in 125
sessions of 7 rats. In 89 sessions 1 head direction cell was isolated, in 35 sessions
2 cells were isolated, and in 1 session 3 cells were isolated. Because the tetrodes
were moved up and down repeatedly over many days to find head direction
cells, it was difficult to determine precisely where each head direction cell was
recorded. However, we estimate that the large majority of cells were recorded
from the anteroventral nucleus (AVN) and the anterodorsal nucleus (ADN).
There were no obvious differences between head direction cells recorded in these

areas.
Effect of Nondisorientation Training
A typical recording day from a rat that had received prior training under

the Nondisorientation conditions is shown in Figure 1A. Three place cells (two

of which are illustrated) were recorded simultaneously over 4 sessions, in which
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the cue card (denoted by the black arc) was located east, west, east, and north.
The rat was disoriented before each session. In each session, the place fields of
both cells retained a constant position relative to the cue card. Placecell 1had a
field in the northwest quadrant of the cylinder when the cue card was east
(Sessions 1 and 3); when the cue card was rotated 180° to the west (Session 2), the
field also rotated 180° to the southeast quadrant; when the cue card was north,
the field was in the southwest quadrant. The field of Place cell 2 also rotated
with the cue card. The third cell (not shown) had a field that was near the center
of the cylinder, but it appeared to rotate with the cue card as well. These results
are consistent with those reported by others (O'Keefe and Conway, 1978; Muller
and Kubie, 1987; O'Keefe and Speakman, 1987), in which the salient cues had

strong control over the place field locations.

Effect of Disorientation Training

We failed, however, to replicate the foregoing effect in the rats trained
under Disorientation conditions. A typical day of recording for such a rat is
shown in Figure 1B. On this day, we recorded simultaneously 6 place cells (2 of
which are shown) and one head direction cell. In each session the cue card was
located east. In the first two sessions, Place cell 1 and Place cell 2 had place fields
located along the east and northwest walls, respectively (although the field of
Place cell 2 was poor in Session 1). However, in Session 3, the fields of both cells
rotated about 135° clockwise relative to the cue card, and they retained this
position in Session 4. The tuning curve of the simultaneously recorded head
direction cell, peaking originally at northeast, rotated by the same amount as the
place fields in Session 3 and retained this direction in Session 4. Of the remaining

4 place cells recorded, 3 of them also rotated by about 135°, and the other had a




field in the center of the cylinder. Note that all four sessions were identical in
terms of both the controlled white cue card and any possible uncontrolled cues in
the laboratory. In general, the cue card had much weaker control over the place
fields and head direction cells in those rats that had been trained under
Disorientation conditions than those rats trained under Nondisorientation
conditions. Moreover, the place cells and head direction cells were always
strongly coupled. Over the total number of recording sessions, in every case that
the place cells rotated in between sessions in relation to the cue card and in
which we recorded a head direction cell simultaneously, the head direction cell
also rotated by approximately the same amount (see below). Simultaneously
recorded place cells were also strongly coupled to each other. For all place cells
recorded in all sessions, the standard rotational deviation from the mean was
19.5°. We consider this number to be within the range of experimental error,
given the variability in place cell firing rates, location sampling, unit isolation,

and remapping effects (see next section) between sessions.

Head direction cells and hippocampal remapping

In some rats, a more complicated "remapping" of the hippocampal
representation occurred when the place fields and head direction cells broke
away from the cue card. An example is shown in Figure 2. For this rat trained
under Disorientation conditions, the head direction cell rotated relative to the cue
card in Session 2 and rotated back to its original direction relative to the cue card
in Sessions 3 and 4. The hippocampal cells displayed a more complicated pattern
of behavior in Session 2, in that some cells completely changed their place fields
in that session. Three of the 5 cells recorded that day are illustrated. Place cell 1

originally had a tight field in the middle of the northeast quadrant of the cylinder
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in Session 1. When the head direction cell rotated relative to the cue card in
Session 2, this place cell developed a completely different field along the
southwest wall of the cylinder (although it still fired weakly in its original
location relative to the head direction cell). In Sessions 3 and 4, when the head
direction cell returned to its original direction, Place cell 1 also returned to its
original field. Place cell 2, which originally was silent in the first session,
developed a very strong field covering the southeast wall in Session 2, but
became virtually silent again in Sessions 3 and 4 (although it maintained a weak
remnant of its field). In contrast, Place cell 3 behaved like the cells in Figure 1B,
in that it maintained the same field in Sessions 1 and 2, but the field rotated
relative to the cue card by the same amount that the head direction cell rotated.
Of the remaining two cells recorded that day, one of them rotated with the head
direction cell and the other probably changed its firing pattern, although this was
ambiguous. The same pattern of results was observed in the cells recorded on
the preceding and following days. Thus, when the head direction cells adopted a
different orientation relative to the cue card, the hippocampus developed a new
representation of the environment, although the new representation was not
completely independent of the original. This rat was the only one that showed
this effect very convincingly over a number of days, although three other rats

showed some evidence of a similar remapping.

Population statistics

As seen in the examples, the cue card had greater control over the place
cells and head direction cells in those rats that had received the
Nondisorientation training than in those rats that had received the Disorientation

training. This comparison is shown for all rats in Figure 3A. For each rat, we
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counted the number of times that its place fields and/or head direction cells
rotated relative to the cue card from one session to the next by at least 45°; these
rotations were called transitions. For example, in Figure 1B, a transition occurred
between Sessions 2 and 3, when the place fields broke away from the cue card
control. Two transitions occurred in Figure 2, when the head direction cell
rotated in Session 2 and rotated back again in Session 3. Since this analysis is
based on 4 days of recording with 4 sessions each day, the number of possible
transitions for each rat was 12 (transitions between days were not counted, to
avoid possible confusion between different neurons). The Disorientation training
rats had many more transitions than the Nondisorientation training rats (t = 4.26,
p =.001, one-tailed). Thus, the extent to which the cue card controlled the
locations of place fields depended strongly on the prior training history of the
rat. Those rats that had previously experienced the cue card as being an
explicitly stable cue had fields that were more strongly bound to the cue card
than those rats that had never had this type of training.

Nevertheless, the cue-control over the place fields of the
Nondisorientation training rats was still not as strong as that reported previously
in experiments under similar recording conditions (Muller and Kubie, 1987;
Bostock et al., 1991). Some insight into this discrepancy is provided by
determining the first recording session in which a transition occurred for each rat

(Figure 3B). Two of the Nondisorientation training rats experienced their first

transition on the last recording session of the last day (Session 16); another rat

never had a transition at all (although it had fewer recording sessions than the
other rats) and was assigned a maximum value of 16. All of the Disorientation
training rats had their first transition by the 7th recording session, before any of
the Nondisorientation training rats had a transition. Thus, the cue card initially

exerted strong control over the place fields in most Nondisorientation training
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rats, but this control quickly lost strength as the rats began to experience the
Disorientation procedure during recording sessions, such that after only a few
days of this procedure the place fields began to break away from the cue card.

Although the Nondisorientation training rats had fewer transitions than
the Disorientation training rats, there was no difference in the magnitude of
rotations for each group. On average, the fields for the Nondisorientation
training rats rotated 129° + 10° S.E. (n = 9, range 74°-171°) relative to the cue card
when a transition occurred, and the fields for the Disorientation training rats
rotated 116° + 7° S.E. (n = 27, range = 53°-174°); the difference was not significant
(t =0.949, p = 0.35, two-tailed). Thus, the difference between the two groups in
the strength of cue card control was manifested only as a difference in the
probability of cells rotating away from the card, not as a difference in the amount
of rotation. There were also no differences between the two groups in the mean
firing rate or the mean information content (see Methods) of place cells.

Figure 4 shows a histogram of the place field positions relative to the cue
card for the recording sessions of all ten rats. The polar angle of the place field
location relative to the cue card in Session 1 was defined as the 0° angle for each
day. The field locations clustered around 0°, indicating that for most sessions the
fields were anchored by the cue card. In those sessions in which a transition
occurred (rotation > 45°), there was no overall bias in favor of any particular
degree of rotation. However, the distributions for individual rats indicate that
some rats may indeed have had idiosyncratic biases in the rotations of their place
fields and head direction cells. For example, one rat had an apparent tendency to
rotate its fields around 230°, another to rotate 90°, etc. However, each of these
rats also had a number of different rotations, and the sample of rotations for each
rat was not large enough to exclude the possibility that these apparent biases

resulted from chance. If the effect is real, though, it suggests that during training,
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the rats may have developed a limited number of stable states of association
between the perceived cue card location and the place cells, and the probability
of the place fields rotating a specific amount was proportional to the strength of
that association (see Discussion). Unfortunately, our data do not allow us to

address this question definitively.

Theta Cells

In 44 sessions of 7 rats, we cleanly isolated at least one theta cell in
addition to the complex-spike cells and head direction cells. Although theta cells
are highly active throughout a given environment, they do tend to have
consistent spatial biases in their firing rates (McNaughton et al., 1983b; Kubie et
al., 1990). We thus performed the same rotational correlation analysis on them as
we did on the place cells. In all sessions, the theta cells' firing biases were bound
to the place cells and the head direction cells. They followed the rotation of the
cue card when the place cells did, and in the 6 sessions in which the place cells
rotated away from the cue card, the theta cells rotated by approximately the

same amount.

Effects of Retraining

We retrained four of the five Disorientation training rats under the
Nondisorientation conditions to see if this new experience of the cue card as a
stable directional reference would cause it to have greater control over the place
fields. Place cells and/or head direction cells were recorded during 4-6 days of
retraining, with 3-4 sessions per day, and then during 2-4 test days under the

Disorientation conditions, with 4 sessions per day. The results are shown in




Table 2. Only one of the rats (3803) had improved control over the place cells by
the cue card, reducing the number of transitions from 5 (before retraining) to 1
(after retraining). The other 3 rats showed no improvement. Interestingly, the
rat that showed improvement was the only one of the four that had no
transitions during the retraining period, when recording was done under
Nondisorientation conditions. It appears that this rat did indeed learn during
retraining that the cue was stable, and this learning carried over to the
Disorientation conditions. The other three rats, however, had many transitions
even during the retraining period; it appears that their learning of the cue card as
an unstable directional reference was so strong that even when they were not
disoriented and the cue was always in the same location, it did not have strong
control over their place fields. Any conclusions from this experiment must be
tentative, though, due to the small sample.

In two of the Nondisorientation training rats, we recorded additional
sessions to test how strong the cue control would be if we recorded under
Nondisorientation conditions, but rotated the cue card between each trial. After
the initial 4 days of Disorientation recording, we gave each rat one day of
Nondisorientation recording with the cue card in its standard east location in all
4 sessions; the fields were stable with respect to the cue card. On the next few
days, we rotated the cue card between each session and recorded under
Nondisorientation conditions. For one rat, in 7 out of 8 sessions the place fields
and head direction cell did not follow the rotation of the cue card, but instead
maintained a constant relationship to the laboratory reference frame. This rat
also had 3 transitions during the Disorientation recording sessions earlier, so it
appears that it had already learned that the cue card was not a stable reference.
For the other rat, though, the place fields followed the cue card in 10 out of 12

sessions, even though the rat was brought right into the recording room in the
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open and could presumably see that the cue card was in a different location each

session. For this rat, the cue control was so strong that it often overrode the rats

internal direction sense even when the rat was not disoriented.

Coupling between place cells and head direction cells

As mentioned above, simultaneously recorded place cells and head
direction cells were always strongly coupled. Figure 5 shows a scatter plot of the
rotation of head direction tuning curves versus the mean rotation of
simultaneously recorded place cells in between sessions, relative to the external
(laboratory) coordinates, in all sessions in which both types of cells were
recorded. Open squares indicate sessions in which the cells followed the rotation
of the cue card; hence, they are clustered around 0°, £90°, and +180°. Black
circles indicate sessions in which a transition occurred. In almost every case, the
rotation of the head direction cells was matched by the rotation of the place cells.
The one case that lies far off the diagonal is a session in which the hippocampal
representation remapped, which makes the mean rotation score for the place

cells unreliable. Overall, the rotational correlation coefficient for the head

direction cells versus the place cells was 0.86 (r2 = 0.74, p < .001; Batschelet, 1981).

Head direction cells and place cells in the same session

Head direction cells and place cells often rotated relative to the cue card
within a given recording session. One example is shown in Figure 6. The place
field of a CA1 cell and the head direction tuning curve of a thalamic cell are
shown broken up into eight 1-min epochs. The head direction cell started out

firing southeast, which was its "proper" direction relative to the cue card (based
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on the prior 3 sessions of the day), but after one minute it rotated about 90°
clockwise, until it was firing when the rat faced south-southwest (Min 3). It
stayed at that direction for about 2 minutes, then began rotating back to its
original southeast direction (Min 5-6), where it remained stable for the rest of the
15-min recording session. The firing of the simultaneously recorded place cell
precisely matched the rotations of the head direction cell. The cell started out
firing when the rat was against the south wall, then rotated about 90° clockwise
and fired when the rat was against the west wall in minutes 3-4, and then rotated
back to its original firing location. Thus, in this session, the cue card initially had
control over the head direction cell and place cell, momentarily lost it as the two
cells rotated in synchrony, and then regained control after a few minutes. This
synchronous rotation of the head direction and place cells, within a recording
session and on a time scale of seconds, reinforces the notion that these two
systems are strongly coupled.

We also saw cases of remapping of the hippocampal representation within
a recording session as the head direction cell rotated within the session. Figure 7
shows a 12-min recording session broken into thirds. The head direction cell
initially fired near west for the first 4 min. It then rotated 90° counterclockwise
until it fired near south (its "proper" direction), where it remained the rest of the
session. At the same time that the head direction cell rotated, Place cell 1 lost its
field along the south wall, whereas Place cell 2 developed a field in the northwest
quadrant. Place cell 3, on the other hand, retained its place field the whole
session, but the field rotated along with the head direction cell. Thus, even
within a single recording session, we see the same partial remapping effect seen
previously between recording sessions (Figure 2).

It was often difficult to determine unambiguously whether the place fields

rotated or remapped within a given session on a minute by minute time scale,
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due to the rat's inadequate sampling of all positions in the cylinder in that short
time period. This is especially true of the remapping effect, which requires a
large number of cells and very good sampling to identify convincingly. The head
direction tuning curves were a much better indicator of rotation within a session,
as a well-isolated head direction cell typically provides a reliable tuning curve in
less than a minute. We therefore used only data from the sessions in which a
head direction cell was isolated to calculate population statistics on these within-
session effects. Of these 125 sessions, the head direction cell rotated by 30° or
more in at least 38 of them (30%), not including a few ambiguous cases in which
a poorly isolated cell made the tuning curve based on a minute's data unreliable.
In the large majority of these cases (29/38), the rotations occurred early, within
the first four minutes of the session. The amount of rotation was quite variable,
ranging from our minimum criterion of 30° up to 130°. This maximum may be
an underestimate, and the number of sessions in which the cell rotated is surely
an underestimate, because of the time delay between placing the rat in the
cylinder, plugging in the electronics, and starting the data collection. It is very
likely that in some sessions, the head direction cell started rotating before data
collection started. There were no obvious differences between Disorientation
training and Nondisorientation training rats in the magnitude or probability of
rotations within a session, although we have do not have enough data on this
effect from the Nondisorientation training rats to make a strong comparison.

For each day of recording, we determined the most stable direction for
each head direction cell relative to the cue card; in two cases this was ambiguous,
because the cell had two equally stable directions. In most cases in which the
head direction cell rotated within the session, it rotated from a direction different
than the stable direction and settled in the stable direction (25/34); in 6 cases the

head direction cell initially fired in a direction different than the stable direction




and rotated to another direction that was still different from the stable direction
(either increasing or decreasing the difference between the cell and the stable
direction); in 3 cases, the head direction cell started at the stable direction, rotated
away from it, but then returned to the stable direction (as in Figure 6). In no
cases did we see a head direction cell start at the stable direction, rotate away,

and then remain at the unstable direction.

Correlation of transitions with entry direction

Sharp et al. (1990) showed that the locations of place fields in a visually
symmetric environment usually depended on the direction from which the rat
entered the apparatus. In the present study, we found no relationship between
the probability of a transition and the absolute entry direction of the rat, the
absolute direction of the cue card, or the entry direction of the rat relative to the
cue card. For example, a transition was equally likely to occur if the rat entered
from the north or south, if the cue card was east or west, or if the rat entered 0° or
180° away from the cue card. One crucial difference between the present study
and that of Sharp et al. (1990) is that during training, we entered the rat into the
cylinder from all directions, whereas Sharp et al. entered the rat from a single
direction. In the present study, we also found no evidence that the fields were
bound to some uncontrolled cue outside the cylinder. Overall, we could
determine no aspect of the recording procedure that would predict whether a

transition would occur in a given session.
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Effects of restraint on head direction cells

Foster et al. (1989) demonstrated an influence of motor set on the firing of
hippocampal place cells. They trained rats to accept tight restraint by wrapping
them in a towel to make the rats immobile, and they showed that place cells
became virtually silent under these conditions, even when the rat was in the
place field of the cell. Cells regained their place fields immediately when the
restraint was removed, even if the rat remained immobile. To test further the
relationship between hippocampal place cells and head direction cells, we
performed this same experiment on 6 head direction cells from 5 rats. All six
cells greatly reduced their firing rates when the rat was restrained, in some cases
shutting off completely (Figure 8); the firing rate increased again when the
restraint was removed. Sometimes the firing rate after restraint did not
immediately reach its prerestraint level, but over time the firing rate usually
recovered to its initial magnitude. The rats were inclined to groom right after the
towel was removed, and this difference in firing rate before and after restraint
may be a reflection of this change in their behavior or internal state. Overall,
though, it appears that the thalamic head direction system shuts down, or greatly
diminishes its firing rates, when the rat is restrained. Similar, but weaker, effects
were reported by Markus et al. (1990) and Taube et al. (1990b) in the
postsubiculum; these experimenters did not restrain their rats very tightly (they
held them in their hands), which probably explains the difference in the strength
of the effect. The results are consistent, though, in demonstrating that head
direction cells, like hippocampal place cells, are modulated by motor set or other
behavioral state variables, thus reinforcing the strong links between these two

systems.
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DISCUSSION

Effects of prior training experience on control of place cells by visual cues

Previous studies of hippocampal place cells indicated that place fields
were under the control of external sensory cues. O'Keefe and Conway (1978)
showed that place fields maintained their positions relative to the distal cues
when an elevated T-maze and the cues were rotated relative to each other.
O'Keefe and Speakman (1987) trained rats to locate a food reward on one arm of
a 4-arm radial maze based on an array of "controlled cues” enclosed within a
black circular curtain. The rats learned to follow the controlled cues to find the
reward, and the place fields also followed the rotation of the cues (although there
remained some influence of the uncontrolled background cues; see below).
Muller, Kubie, and their colleagues introduced the much simpler behavioral task
and experimental apparatus adopted in the present study, in which rats searched
for food pellets dropped randomly in an enclosed apparatus that had only a
single salient visual cue, typically a large white cue card. In their experiments,
when the card was rotated in between sessions, the place cells and head direction
cells almost always followed the rotation (Muller and Kubie, 1987; Taube et al.,
1990b; Bostock et al., 1991; but see Rotenberg et al., 1993; also Wiener et al., 1992).

The results from the present study demonstrate that the cue control over
hippocampal place fields is not an inherent property of the system, even when
there is only one salient cue available to the rat. Rather, the degree to which the
cue controls the locations of place fields depends strongly on the prior experience
of the animal. In particular, it appears that the rats have to learn that the visual
cue is a stable directional reference for the cue to have control over the fields;

alternatively, the cue may have control by default, unless the rat learns that it is




not a stable cue. The Disorientation training rats of this study never had the
explicit experience of the cue card as a stable cue, for the disorientation
procedure and the experimental control over other potential cues made it
possible for the rat to perceive the cue as being rotated from trial to trial. The
Nondisorientation training rats, however, did receive the explicit information
that the cue card was a stable directional reference. When these two groups were
both tested under Disorientation conditions, the cue had much stronger control
over the place fields in those rats that had the prior explicit experience of the cue
card as a stable landmark.

The effect of the Disorientation training on cue control is somewhat
counterintuitive. The intent of the procedure in our earlier experiments was
actually to enhance the cue control over the fields by disrupting the rat's internal
direction sense, which might otherwise provide directional information in
conflict with the cue card. Instead, we found just the opposite result. Although
our data do not provide an unambiguous explanation as to why this is so, we
suggest a plausible account based on a hypothesis by McNaughton et al. (1991)
regarding the control of visual cues over the internal direction sense.

There are two types of sensory information about spatial orientation
available to the rat: information about landmarks in the environment, mediated
primarily by vision, and information about its own body movements in the
environment, mediated by vestibular and proprioceptive receptors; however, the
vestibular system is prone to errors that accumulate over time. McNaughton et
al. (1991) hypothesized that during exploration of a novel environment,
associations are built between the visual cues and the rat's internal direction
sense, such that, in a familiar environment, the directional information from the
visual cues overrides faulty information from the vestibular system and resets

the internal compass. Such a system might also explain the effects of
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Disorientation training. The Nondisorientation training rats always had a
consistent relationship between their internal direction sense and the cue card,
and thus a strong association could have developed during repeated training
sessions. When these rats were subsequently disoriented during recording, the
direction sense was reliably bound to the visual cue. The Disorientation training
rats, on the other hand, were never able to build up as strong an association
between the visual cue and the direction sense because there was no stable
relationship between the rat's internal direction sense and the cue card during
training. One possible outcome is that a weak association may have formed
between the direction and landmark representations. In this case the visual cue
usually would override the inertial system, except perhaps when the initial
mismatch between the two systems is too great and the direction sense settles at
some random intermediate direction. Alternatively, the system may have
developed a number of stable association states during training, each of different
strengths. The strongest one usually would predominate, but on occasion the
system would settle into a different stable association state between the direction
sense and the visual cue, resulting in a rotation of the head direction cells and a
rotation or remapping of the place cells away from the cue card. Although our
data do not distinguish strongly between these possibilities, common to both is
the underlying notion that the inertial orientation system has precedence over
the visual cues in orienting the rat until the rat learns that the visual cues are

stable landmarks.

Hippocampal place cells and thalamic head direction cells

Under the recording conditions of the present experiment, hippocampal

place cells and thalamic head direction cells were strongly coupled. It is not
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known whether one system drives the other, or whether they are both driven by
another system, although Mizumori and Williams (1992) showed that
inactivation of the lateral dorsal nucleus (LDN)—another thalamic nucleus
containing head direction cells—disrupted hippocampal place fields and caused
spatial learning deficits. It is also not known whether this strong coupling
extends to other recording environments or behavioral tasks. Are there
behavioral situations in which the two systems can be decoupled? If so, do the
different systems of head direction cells (e.g., ADN vs. LDN vs. postsubiculum)
behave differently, or are they always in synchrony? The answers to these
important questions will help us to understand the nature of the interactions

between the hippocampal representation and the internal direction sense.

Hippocampal remapping

One of the intriguing results of this study was the partial remapping of the
hippocampal place representation seen in some rats, both between and within
sessions, when the head direction cells rotated away from the cue card. This
effect is similar to the remapping reported by Bostock et al (1991) when they
replaced the rat's familiar white cue card with a novel black card and observed
the hippocampus develop independent representations of the two conditions
over time. O'Keefe and Speakman (1987) also showed a similar effect in that
some cells in their study had place fields only when their controlled cues were in
a particular orientation relative to the background cues. The present results
show that this kind of remapping can occur even in the absence of any change in
the sensory environment. All that is required is that the animal perceive that the
environment has been somehow altered (e.g., rotated) and the hippocampus may

develop a new representation of the altered environment. Other evidence




29

demonstrates that such remappings can result even from a change in the
behavioral task of the animal, with no real or imaginary change in the
environment (Qin et al., 1994). These results clearly open up many questions
about what it is that is represented by place cell firing. One prominent view has
been that place fields represent the constellation of sensory cues impinging on
the animal's sensorium at a given location in space (McNaughton et al., 1989b).
Such an account would have trouble explaining the rotation or remapping of
place fields when there is no change in the sensory cues in the environment. One
possibility is that the hippocampus can form separate, context-dependent
representations of the same environment, and that each cell is capable of
representing different sets of cues in each context (just as it is capable of
representing different cues in different environments). Thus, a cell will fire at
one location (representing one set of cues) when the cue card is perceived east
(Context 1) and will fire at another location (representing a different set of cues)
when the cue card is perceived west (Context 2). Alternatively, the whole notion
of place cells representing constellations of cues may have to be replaced
(McNaughton et al., 1994). Additional experiments like the present study, which
address the factors influencing place cell firing and plasticity, may provide the
data necessary to develop realistic models of hippocampal representations and

function.
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FIGURE LEGENDS

Figure 1. Representative results from a rat trained under Nondisorientation
conditions (A) and a rat trained under Disorientation conditions (B). Both rats
underwent the Disorientation procedure before recording. (A) Firing rate maps
of two simultaneously recorded CA1 place cells were constructed by binning the
cylinder into 2.8 cm squares and dividing the number of times the cell fired when
the rat occupied each bin by the total amount of time the rat spent in the bin. A
smoothing algorithm was then applied such that the value of each bin became
the average of itself and its 4 adjacent neighbors. The maps are color coded such
that "cooler" colors represent low firing rates (blue indicates no firing) and
"hotter" colors indicate high firing rates (red indicates maximal firing). The black
arc represents the location of the white cue card each session, which was rotated
east to west to east to north in between sessions. The place fields of both cells
maintained their positions relative to the cue card in all sessions (i.e., they rotated
with the cue card). (Rat 3911. Direction rat entered cylinder: Session 1: north; 2:
east; 3: north; 4: south. Maximum firing rates for Cell 1 in spikes/sec: Session 1: 20; 2:
20; 3: 9; 4: 2.5. Maximum firing rates for Cell 2 in spikes/sec: Session 1: 24; 2: 24; 3:
18; 4: 10.) (B) Firing rate maps of two simultaneously recorded CA1 cells were
constructed as above. In addition, a head direction cell from the thalamus was
also recorded simultaneously, and its tuning curve for each session was
constructed by dividing the number of times the cell fired when the rat faced a
particular direction (in bins of 10°) by the amount of time the rat faced that
direction. On this day, all four sessions were run with the cue card at its
standard location (east). In Session 3, both place cells rotated their place fields
and the head direction cell rotated its firing direction relative to the cue card (and

to the external environment) by about the same amount. All 3 cells maintained
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these new firing properties in Session 4. (Rat 3803. Direction rat entered cylinder:
Session 1: north; 2: south; 3: west; 4: east. Maximum firing rates for Cell 1 in
spikes/sec: Session 1: 18; 2: 15; 3: 8; 4: 6. Maximum firing rates for Cell 2 in spikes/sec:
Session 1: 15; 2: 30; 3: 30; 4: 36. Head direction cell axes: 45 spikes/sec all 4

sessions.)

Figure 2. Example of remapping of the hippocampal representation when the
head direction cell rotates away from the cue card. Firing rate maps of 3
simultaneously recorded CA1 place cells and the head direction tuning curve of 1
simultaneously recorded thalamic cell were constructed as in Fig. 1. The cue card
was positioned east, north, east, and south in the four sessions. In Sessions 1, 3,
and 4, the place cells and head direction cell all remained constant relative to the
cue card. In Session 2, however, when the cue card was rotated 90°
counterclockwise, the head direction cell rotated about 45° in the opposite
direction. The hippocampal cells displayed a complicated pattern of behavior, in
that some cells completely changed their firing properties in that session. Cell 1
changed its place field, Cell 2 gained a field, and Cell 3 rotated its field along
with the head direction cell. All three cells reverted back to their original firing
properties in Session 3. (Rat 3918. Direction rat entered cylinder: Session 1: north;
2: east; 3: north; 4: west. Maximum firing rates for Place cell 1 in spikes/sec: All
sessions: 9. Maximum firing rates for Place cell 2 in spikes/sec: All sessions: 18.
Maximum firing rates for Place cell 3 in spikes/sec: All sessions: 12. Head direction cell
axes in spikes/sec: Session 1:*18; 2: +12; 3: £12; 4: £10.)

Figure 3. (A) For each rat we plotted the number of times that the place cells
and/or head direction cells rotated relative to the cue card (transitions) over the

first 4 days of stable recordings for each rat. The rats trained under the
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Nondisorientation conditions (filled circles) had many fewer transitions than the
rats trained under the Disorientation conditions (open circles). (B) For each rat
we plotted the session number in which the rat had its first transition. All of the
rats trained under Disorientation conditions (open circles) had their first
transition before any of the rats trained under the Nondisorientation conditions
(filled circles). One of the Nondisorientation training rats never had a transition
(it was assigned the maximum value of 16), and two others had their first
transition on the last recording session (Session 16). It appears that the cue card
initially had strong control over the cells in most of the Nondisorientation
training rats, but it soon lost this control as these rats began to experience the

Disorientation procedure during recording sessions.

Figure 4. Place field locations relative to the cue card for the first 16 stable
recording sessions of each rat. The polar angle of the place field location in the
first session of each day was considered the 0° angle for that day. The
distribution is peaked sharply around 0°, indicating that in most sessions the
fields were anchored to the cue card. When the fields did rotate relative to the
cue card, there was no tendency for the population to rotate to any particular

direction.

Figure 5. Scatter plot of rotations of head direction cell tuning curves in between
sessions, relative to external (laboratory) coordinates, versus the place cell mean
rotations, for all sessions in which both types of cells were recorded
simultaneously. Open squares indicate sessions in which the visual cue had
control over the cells. Black circles indicate sessions in which a transition

occurred.
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Figure 6. Corotation of a CA1 place cell and a head direction cell within the same
recording session. The CA1 firing rate map and the head direction tuning curve
are broken down into 1 min segments for the first 8 minutes of the recording
session. Both cells initially fired at their "correct” location/ direction relative to
the cue card (as determined by the previous three sessions that day). During the
second and third minutes, both cells rotated approximately 90° clockwise, where
they stayed for about 2 minutes before rotating back to their original firing
location/direction (6th minute), where they stayed for the rest of the 15-min
session. The white areas in the firing rate maps indicate locations that the rat did
not visit within that minute. The bilobed head direction tuning curves indicate
that we were probably recording two cells, which rotated together. (Rat 3803.
Maximum firing rate for place cell, each minute: 30 spikes/sec. Head direction cell

axes, each minute: £50 spikes/sec.)

Figure 7. Rotation of a head direction cell and partial remapping of the
hippocampal representation within the same recording session. The head
direction tuning curve and the firing rate maps are broken down into 4-min
segments. The head direction cell initially fired west during the first four
minutes, then rotated about 90° counterclockwise until it fired south, where it
remained for the final 8 minutes of the session. Place cell 1 had a field against the
south wall during the first 4 minutes, but the field disappeared when the head
direction cell rotated. At the same time, Place cell 2 developed a field, and Place
cell 3 rotated with the head direction cell. (Rat 3918. Maximum firing rates for
place cells in spikes/sec, all time periods: Cell 1: 5; Cell 2: 8; Cell 3: 14. Head direction

cell axes, all time periods: £30 spikes/sec.)
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Figure 8. Effects of tight restraint on the firing of head direction cells. For 6 cells
in 5 rats, we measured the directional tuning curves while the rat sat on a narrow
pedestal and was passively rotated. We then wrapped the rat securely in a
towel, such that it was incapable of moving, and remeasured the directional
tuning curve. The head direction cells were either completely silenced or were
greatly attenuated. When the restraint was removed, the cells mostly returned to
their original firing rates, although it sometimes took minutes for the cells to
reach their maximum rates. (Axis scales, all conditions, in spikes/sec: Rat 3803: 125;

Rat 3851(1): +40; Rat 3851(2): £50; Rat 3884: +45; Rat 3912: +40; Rat 3986: £70.)




Table 1. Standard sequence of recordings for main experiment

Cue card direction

Day Session 1 Session 2 Session 3 Session 4
1 East East East East
2 East North East South
3 East West East North

4 East East East East




Table 2. Effects of retraining Disorientation rats

Number of transitions

Before During After

Rat number retraining retraining retraining
3803 5/12 0/10 1/12
3917 6/12 3/12 8/12
3918 5/12 9/18 6/12

3986 7/12 6/12 3/6
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